18 research outputs found

    Graph Treewidth and Geometric Thickness Parameters

    Full text link
    Consider a drawing of a graph GG in the plane such that crossing edges are coloured differently. The minimum number of colours, taken over all drawings of GG, is the classical graph parameter "thickness". By restricting the edges to be straight, we obtain the "geometric thickness". By further restricting the vertices to be in convex position, we obtain the "book thickness". This paper studies the relationship between these parameters and treewidth. Our first main result states that for graphs of treewidth kk, the maximum thickness and the maximum geometric thickness both equal ⌈k/2⌉\lceil{k/2}\rceil. This says that the lower bound for thickness can be matched by an upper bound, even in the more restrictive geometric setting. Our second main result states that for graphs of treewidth kk, the maximum book thickness equals kk if k≤2k \leq 2 and equals k+1k+1 if k≥3k \geq 3. This refutes a conjecture of Ganley and Heath [Discrete Appl. Math. 109(3):215-221, 2001]. Analogous results are proved for outerthickness, arboricity, and star-arboricity.Comment: A preliminary version of this paper appeared in the "Proceedings of the 13th International Symposium on Graph Drawing" (GD '05), Lecture Notes in Computer Science 3843:129-140, Springer, 2006. The full version was published in Discrete & Computational Geometry 37(4):641-670, 2007. That version contained a false conjecture, which is corrected on page 26 of this versio

    Bicriteria Network Design via Iterative Rounding

    No full text

    Generalised k-Steiner tree problems in normed planes

    Get PDF
    The 1-Steiner tree problem, the problem of constructing a Steiner minimum tree containing at most one Steiner point, has been solved in the Euclidean plane by Georgakopoulos and Papadimitriou using plane subdivisions called oriented Dirichlet cell partitions. Their algorithm produces an optimal solution within O(n2)\mathcal{O}(n^2) time. In this paper we generalise their approach in order to solve the kk-Steiner tree problem, in which the Steiner minimum tree may contain up to kk Steiner points for a given constant kk. We also extend their approach further to encompass arbitrary normed planes, and to solve a much wider class of problems, including the kk-bottleneck Steiner tree problem and other generalised kk-Steiner tree problems. We show that, for any fixed kk, such problems can be solved in O(n2k)\mathcal{O}(n^{2k}) time

    Tree-partitions of k-trees with applications in graph layout

    No full text
    Abstract. A tree-partition of a graph is a partition of its vertices into ‘bags ’ such that contracting each bag into a single vertex gives a forest. It is proved that every k-tree has a tree-partition such that each bag induces a (k − 1)-tree, amongst other properties. Applications of this result to two well-studied models of graph layout are presented. First it is proved that graphs of bounded tree-width have bounded queuenumber, thus resolving an open problem due to Ganley and Heath [2001] and disproving a conjecture of Pemmaraju [1992]. This result provides renewed hope for the positive resolution of a number of open problems regarding queue layouts. In a related result, it is proved that graphs of bounded tree-width have three-dimensional straight-line grid drawings with linear volume, which represents the largest known class of graphs with such drawings.

    Graph Treewidth and Geometric Thickness Parameters

    No full text
    Consider a drawing of a graph G in the plane such that crossing edges are coloured differently. The minimum number of colours, taken over all drawings of G, is the classical graph parameter thickness. By restricting the edges to be straight, we obtain the geometric thickness. By additionally restricting the vertices to be in convex position, we obtain the book thickness. This paper studies the relationship between these parameters and treewidth. Our first main result states that for graphs of treewidth k, the maximum thickness and the maximum geometric thickness both equal ⌈k/2⌉. This says that the lower bound for thickness can be matched by an upper bound, even in the more restrictive geometric setting. Our second main result states that for graphs of treewidth k, the maximum book thickness equals k if k ≤ 2 and equals k + 1 if k ≥ 3. This refutes a conjecture of Ganley and Heath [Discrete Appl. Math. 109(3):215–221, 2001]. Analogous results are proved for outerthickness, arboricity, and star-arboricity
    corecore